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An Edge Preserving Differential Image Coding Scheme-*
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Abstract -

Differential encoding techniques are fast and easy to implement.
However, 2 major problem with the use of differentjal encoding
for images js the rapid edge degradation encountered when us.
ing such systems. This makes differential encoding techniques
of limited utility especially when toding medical or scientific
images, where edge preservation is of utmost importance. We
present a simple, easy to implement differential image coding
system with excellent edge preservation properties. The coding
system can be used over variable rate channels which mzkes jt
especially attractive for use in the packet network environment.

Introduction

The transmission and storage of digital images requires an enor-
mous expenditure of resources, necessitating the use of compres-
sion techriques. These techniques include relatively Jow com-
plexity predictive techniques such as Adaptive Differential Pulse
Code Modulation (ADPCM) and its variations, as well as rel-
atively higher complexity techniques such as transform coding
and vector quantization [1.2). Most compression schemes were
originally developed for speech and their application to images is
at times problematic. This is especially true of the Jow complex-
ity predictive teckniques. A good example of this is the highly
popular ADPCM scheme. Originally designed for speech [3], it
has been used with other sources with varying degrees of suc-
cess. A major problem with its use in image coding is the rapid
degradation in quality whenever an edge is encountered. Edges
are perceptually very important and occur quite often in most
images. Therefore, the degradation of edges can be perceptually
very annoying. If the images under consideration contain medi-
cal or scientific data, the problem becomes even more importent,
25 edges provide position information which may be crucial to
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the viewer. This poor edge reconstruction quality has been a
major factor in preventing ADPCM from becoming as popular
for image coding as it is for speech coding.

While good edge reconstruction capability is an important
requirement for image coding schemes, another requirement that
is gaining in importance with the proliferation of packet switched
networks, is the ability to encode the image at different rates.
In a packet switched network, the available channel capacity is
not a fixed quantity, but rather fluctuates as a function of the
load on the network. The compression scheme must therefore be
capable of operating at different rates as the available capacity
changes. This means that it should be able to take advantage
of increased capacity when it becomes available while providing
graceful degradation when the rate decreases to match decreased
available capacity.

In this paper we describe a DPCM based coding scheme
which has the desired properties listed above. It is a low com-
plexity scheme with excellent edge preservation in the recon-
structed image. It takes full advantage of the available channe!
capacity providing lossless compression when sufficient capacity

-

is available, and very graceful degradation when a reduction in
rale is required.

Notation and Problem Formulation

The DPCM system consists of two main blocks, the quantizer
and the predictor (see Fig. 1). The predictor uses the correlation
between samples of the waveform to predict the next sample
value. This predicted value is removed from the waveform at
the transmitter and reintroduced at the recejver. The prediction
error is quantized to one of a finite number of values which is
coded and transmitted to the receiver. The difference between
the prediction error and the quantized prediction error is called
the quantization error or the quantization noise. If the channel
is error free, the reconstruction error at the receiver is simply the
quantization error. To see this, note (Fig. 1) that the prediction
error e(k) is given by

e(k) = s(k) - p(k) (1)
where the predicted value is given by

plk)=3"aji(k - j) (2)

and
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$(k) = eg(K) + p(k). (3)
Assuming an additive noise model, the quantized prediction
error ey(k) can be represented as

eg(k) = e(k) + ny(k) (4)

where n (k) denotes the quantization noise. The quantized pre-
diction error is coded and transmitted to the receiver. If the
channel is noisy this is received as €;(k) which is given by

& (k) = eg(k) + ne(k) (5)
where n (k) represents the channel noise. The output of the
receiver §(k) is thus given by

§(k) = p(k) + &;(k) (6)

where

Blk) = p(k) + ng(k) ()
the additional term n, (k) being the result of the introduction
of channel noise into the prediciion process. Using (1), (4). (58).
and {7)in (6) we obtain

§(k) = <(K) + ng(k) + ne(k) + ny (k). (8)

If the channel is error {ree, the last two terms in (8) drop out
and the diference between the original and reconstructed sigrzl
is simply the quantizztion error.

When the prediction error is small, it falls into one of the
inner levels of the quantizer, and the quantization noise is of a
type referred to as granular noise. 1f the prediction error falls in

one of the outer levels of the quantizer,the incurred quantization
error is called overload noise. Because of the way the granular
noise i gererated it is generally smaller in magnitude than the
overlozd noise and is bournded by the cize of the quantization
interval. The overload nolse on the other hand is essentially
unbounded and can become very Jarge depending on the size of
the prediction error. Asedge pixels are rather difficult to predict,
the corresponding prediction error is generally large, 2nd this
leads 1o large overload roise values. Furthermore, because this
error effects not only the reconstruction of the current pixel,
but also future predictions, the prediction errors corresponding
to the next few pixels also tend to be large, leading to an edge
“smearing” effect.

Reduction of the edge degradation can therefore be obtained
by reducing or eliminating the slope overload noise. Reduc-
tion of the slope overlozd noise can be obtained by improving
the prediction process. Gibson [4] analyzed ADPCM systems
with backward adaptive prediction, and showed that the track-
ing ability of the adaptive predictor can be improved by the
addition of zeros in the predictor. Motivated by these results,
Sayood and Schekall [5) designed ADPCM systems for image
coding with ARMA predictors. Their results show that some
reduction in the edge degradation is possible with the use of
adaptive zeros in the predictor. While the use of these predic-
tors improves the edge reconstruction there is still significant
degradation in the edges. One technique to further improve the
edge performance was developed by Schekall and Sayood [6),
which uses the Jayant quantizer as an edge detector. The over-
load noise is then reduced by sending a quantized representation
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of the noise through a side channel. The advantage of this ap-
proach is that it can be added to existing ADPCM systems.
The disadvantage is that the use of a side channel introduces
svnchronization problems. In this paper we propose a different
approach for edge preservation which does not require a side
channel. This approach is described in the following section.

Proposed Approach

The approach taken in this paper is a variation on the standard
rate-distortion tradeofl. The basic idea is that the slope over-
load noise can be reduced by increasing the rate. However rather
than increasing the rate for encoding each and every pixel, there
is only an instantaneous rate increase whenever slope overload
is encountered. The way this is implemented is outlined in the
block diagram of Figure 2. A DPCM system is followed by a
Jossless ericoder at the transmitter. At the receiver the inverse
operations are performed. The DPCM system diflers from stan-
dard DPCM systems in that the quantizer being used has an
unlimited number of levels. In practice what this means is that
if the input has 256 levels, which is standard for monochrome
images, then the DPCM quantizer will have 512 levels. This
efectively eliminates the overload noise making the distortion
a function of the quantizer stepsize A. Of course by itself it
2lso eliminates any compression that may have been desired, in
fact it requires an increase of one bit in the rzte. The com-
pression is obtained by use of the lossless encoder. The lossless

encoder output alphabet consists of N codewords. These code-
words correspond to N consecutive levels in the quantizer. Let
the smallest Jevel be labeled z; and the largest level be labeled
zy. If the quantizer output e (k) is a level between z; and
24, then the Jossless encoder puts out the corresponding chan-
nel symbol. If, however, €;(k) is greater than zy the encoder
puts out the symbol corresponding 1o y. A new value e (k)
is then obtzined by subtracting zy from ¢, (k). If this value is
less than z4 then it is encoded using the corresponding code-
word in the Jossless encoder output alphabet. Otherwise, zy is
again subtracted from e;; (k) to generate e 2{k). This process is
continued till some €., (k) where

€r(k) = e (k) —nzpy

and eg,(k) is Jess than zy. A similar strategy is followed when
¢.(k) £ 7. Thus the instantaneous rate is increased by a func-
tion of n whenever the prediction error falls outside the closed
interval [z2,z4).

Example : Consider a DPCM system with a stepsize A of 2
where the input output relationship is given by

Qlz}=2k if 2k-1<z<2k+1; k=012, ..

Let the Jossless encoder output alphabet be of size eight with
z; = —4,and z = 10. If the input (k) is 7 the quantiger out-
put e, (k) is 8, which is in the lossless“encoder output alphabet
and therefore this value is encoded as a single codeword. If ¢(k)
is 15 then e (k) is 16, which is larger than zy. In this case,
the encoder puts out the codeword corresponding to zy and
generates e, (k) = 16 = 10 = 6 which is in the encoder output
alphabet. Therefore, the encoder output consists of two code-
words representing z(10) and 6. If the inputis —7,e.(k) = -6
which is less than 2. Thus the lossless encoder output consists
of two symbols. One corresponding to the value of z,(-4) and



one corresponding 1o the value of —2. Note that if the input is
10 or -4 {i.e. zy or z1) then the output will be the sequence
10,0 or -4,0.

One of the consequences of this type of encoding is that it
can generate runs of . and zy whenever the image contains
a large number of edges. Fortunately the encoding scheme also
provides a significant number of special symbols that can be used
to encode these runs. For example, the sequence z followed by
a negative value and thesequence z followed by a positive value
would not occur in the normal course of events. These sequences
can therefore be used to encode the runlengths of z; and zy.
Consider for example a system in which A is 2 and z is - 4.
The output of the lossless encoder therefore corresponds to the
values —4,-2,0,2,4. In the standard system a value of 4 is
always followed by a value of 0 or 2. Similarly a value of —4 is
always followed by a value of 0 or —2. Therefore.the sequences
4~2and -4+2 can be used as special symbals to denote runs of
4 or —4. A simple strategy is to replace every two 4’s.{or -4’s)
after the initial 4 by a -2 (or 2). For example a value of 10
would still be represented by 4 4 2. However a value of 14 would
be represented by 4 -2 2 instead of 4 4 4 2. Similarly a value
of 18 would be represented by 4 -2 4 2 and a value of 22 would

be represented by 4 -2 -2 2. For this particular scheme, a run of
length n would be represented by n — {232 codewords. When
the size of the lossless encoder output is increased, the number
of special symbols available also increases and the coding of the
runs can be performed more efficiently.

These special sequences can also be used to signal a change
of rate for applications in which the available channel capacity
changes with time. The actual change can be accomodated by
changing the stepsize and reducing the lossless encoder codebook
size by the same amount. Several of the svstems proposed above
were simulated. The results of these simulations are presented
in the next section.

Results

Four systems of the type described in the previous section have
been simulated. Two of the systems simulated use a one tap
fixed precictor, while the other two use a one pole four zero
predictor with the zeros being adaptive. One of the systems in
each case contains the lossless encoder followed by a runlength
encoder while the other contains only the lossless encoder with-
out the runlength encoder. The test images used were the USC
GIRL image, and the USC COUPLE image. Both are 236 X
256 monochrome eight bit images and have been used often as
test images. The objective performance measure were the Peak
Signal to Noise Rztio (PSNR) and the Mean Absolute Error
(MAE}) which are defined as follows:

. 2552
PSNR = 101ogyp W

MAE =<|s(k) = §(k)| >

where < - > denotes the average value.

Several initial test runs were performed using different num-
ber of Jevels, different values of z; and different values of A
to get a feel for the optimum values of the various parameters
(Given z; and A, ry is automatically determined.). We found
that an appropriate way of selecting the value of 27 was using
the relationship

N-1
rL = -l—Q—JA

where {z] is the largest integer less than or equal to z, and N
is the size of the alphabet of the lossless coder. This provides
a symmetric codebook when the alphabet size is odd, and a
codebook skewed to the positive side when the alphabet size is
even. The zero value is always in the codebook.

As the alphabet size is usually not a power of two, the binary
code for the output alphabet will be a variable length code. The
use of variable length codes always bring up issues of robustness
with respect to changing input statistics. With this in mind,
the rate was calculated in two different ways. The first was to
find the output entropy, and scale it up by the ratio of symbols
transmitted to the number of pixels encoded. We call this rate
the entropy rate, which is the minimum rate obtainable if we
assume the output of the lossless encoder to be memoryless.

While this assumption is not necessarily true, the entropy rate
gives us an idea about the best we can do with a particular
system. We will treat it as the lower bound on the obtainable
rate. We also calculated the rate using a predetermined variable
length code. This code was designed with no prior knowledge
of the probabilities of the different letters. The only assumption
was that the Jetters representing the inner levels of the quantizer
were always more likely than the letters representing the outer
Jevels of the quantizer. The code tree used is shown in Figure 3.
Obviously, this will become highly inefficient in the case of small
alphabet size and small A, as in this case, the outer levels 7
and zy will occur quite frequently. This rate can be viewed as
an upper bound on the achievable rate.

The results for the system with a one tap predictor and with-
out the runlength encoder are shown in Tables 1 and 2. Table 1
contains the results for the COUPLE image, while Table 2 con-
tains the results for the GIRL image. In the table R, denotes
the entropy rate while Ry is the rate obtained using the Huffman
code of Figure 3. Recall that for image compression schemes,
systems with PSNR values of greater than 35 dB are percep-
tually almost identical. As can be seen from the PSNR values
in the tables there is very little degradation with rate, and in
fact if we use the 35 dB criterion there is almost no degrada-
tion in image quality unti] the rate drops below two bits per
pixel. This can be verified by the reconstructed images shown
in Figure 4. Each picture in Figure 4 consists of the original
image, the reconstructed image and the error image magnified
10 fold. In each of the pictures, it is extremely difficult to tell
the source or original image from the reconstructed or output
image. In fact, in the case of the image coded at rates zbove
two bits per pixel it is well nigh impossible. This subjective ob-
servation js supported by the error images in each case which
are uniform in texture throughout without any of the standard
edge artifacts which can be usually seen in the error images for
most compression schemes.

We can see from the results that if the value of A and hence
7y is fixed, the size of the codebook has no effect in on the perfor-
mance measures. This is because the only effect of reducing the
codebook size under these conditions is to increase the number
of symbols transmitted. While this has the eflect of increasing
the rate, because of the way the system is constructed, it does
not influence the resulting distortion. The drop in rate for the
same distortion as the alphabet size increases can be clearly seen
from the results in Tables 1 and 2.
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Table 3 shows the decrease in rate when a simple runlength
coder is used. The runlength coder encodes long strings of 71
and zy using the special sequences mentioned previously. As
can be seen from the results the improvement provided by the
current runlength encoding scheme is significant only for small
alphabets and small values of A. This is because it is under
these conditions that most of the long strings of z; and 2 are
generated. However we are not as yet using many of the special
sequences in the Jarges alphabet codebooks, so there is certainly
room for improvement.

The one tap predictor was replaced with an adaptive ARMA
predictor with a fixed pole and four adaptive zeros. The fixed
pole was at a lag of 257 (pixel above) while the zeros were at
lags of one, two, three and four. The adaption was performed
using a sample LMS algorithm as follows. Let By be the vector
of predictor coefficients at time k. The adaption algorithm was

B4 = By + }lé‘(k\)Ek
where y is the adaption stepsize and
E. = (eg(k = 1) e (k= 2).ec{k = 3).eq(k = H)7.

The results from using this predictor are chown in Tables 4,
and 6. While there is some improvemert in 2l cases, the results
for the COUPLE image show a greater improvement than the
results for the GIRL imzge. This can be explained by noting
that the COUPLE imezge contains many more edges than the
GIRL image. As the ARMA predictor tends 1o improve predic-
tor performance when edges zre encountered, the improvement
in performance occurs in the image with more edges.

Cerclusion

We have demonetrzted a simpie image coling scheme which is
very casy Lo impiement in realtime znd has excellent edge preser-
valicn properties over 2 wide range of rates.

This svstam would be especially uselul in transmitting im-
zges over channels where the zvalable bandwidth may be vary.
Tlie cdge preserving quality is especially vseful in the encoding
of scientific and medical imeges.
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Fig. 2 Proposed Encoder Structure

RFCORRRIN L PP S T LS g
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Size = 3 Size=5 Size=8
Delta MAE PSNR(dB) R. Ry Ry Ry Re Ry

0.5067 51.0830 6.1615 7.1418 4.9334 6.8635 4.4404 ©6.6884
1.4790  42.7898 3.8000 4.0587 3.3637 2.7982 3.1673 3.6939
2.4676  38.6365 29577 3.0137 2.6553 2.7729 2.5490 2.7023
3.3697 36.0009 24314 2.4972 22327 2.2756 2.1662 2.2267
5.1359  32.3682 1.8277 1.9800 1.7233 1.7963 1.6930 1.7669

—
Doo s

Table 1: Performance results for the COUPLE image, alphabet size 3,5and 8.

Size=3 Size =5 Size=8
Delta MAE PSKR (dB) RL Ry R Ry R Ry

0.5067 51.0830 6.2521 7.8120 5.0554 7.4713 4.5635 1.1275
1.4790 427888 4.0088 4.3976 3.7414 40592 3.2668 3.8740
2.4676 38.6565 3.0819 3.2547 2.7870 2.0279 2.6468 2.8063
3.3697 36.0009 2.5543 2.6860 2.3272 23783 2.2617 2.2831
12 51338 32.3682 1.9426 2.1122 1.8046 1.8439 1.7786 1.8009

o O N

Table 2: Performance sesults for the GIRL image, alphzbet size 3,5 andFS.

Size =3 Size = 8 Size = 8
Without RL  With RL Without RL With RL Without RL  With RL
Delta Encoder Encoder Encoder Encoder Encoder Encoder
2 6.16 5.44 4.93 4.34 4.44 4.29
4 3.89 3.60 3.36 3.25 3.16 3.1%
6 2.96 2.81 2.66 2.63 2.53 2.55
8 2.43 2.35 2.23 2.22 2.17 217
12 1.83 1.80 1.72 1.72 1.69 1.69

Teble 3: Comperison of Entropy rates between system with Runlength (RL)
Encoder and without RL Encoder for COUPLE image.

Size = 3 Size = 5 Size = §
Delta MAE PSANR (¢B) Re Ry RL Ru R, Ru

1.59 46.11 471 500 3.94 477 3.63 4.69

2

4 2.00 40.71 3.02 3.04 270 2.82 250 2.76
6 2.96 37.42 233 2.38 214 218 2.09 2.13
8 3.86 3511 1.4 205 1.81 187 1.79 1.83
12 561 31.79 1.49 1.72 142 1.56 141 1.5%

Table 4: Performance results o1 COUPLE image with adaptive ARMA predictor.

Size =13 Size =3 Size = 8
Delta MAE PSNR(dB) AL Ry R, Ru RL Ru

2 1.07 45.99 566 633 4.59 606 4.8 5.92 .
4 2.06 40.55 3.60 3.69 3.15 3.42 2.99 3.32 -

) 3.06 37.1% 278 2.82 2.51 256 242 2.48

8 4.04 34.75 231 2.38 212 214 207 209

12 6.08 31.23 199 195 1.66 1.73 165 170

Table 5: Performance results for GIRL image with adaptive ARMA predictor.
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Size=3 Size =3 Sive = 8
Without RL With RL  Without RL  With RL  Without Bl Wik DL

Delta Encoder Encoder Encoder Encoder Encoder Jnicoder
2 4.71 4.25 3.9+ 3.70 3.63 3.57
4 3.02 2.86 2.70 2.67 2.060 2.59
6 2.33 2.26 2.14 2.13 2.09 2.09
8 1.94 1.90 1.61 1.51 1.70 1.79
12 1.49 1.48 1.42 1.42 1.51 1.41

Table 6: Comparison of Entropy rates between systems with and without
the Runlength Encoder for the COUPLE image.
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Figure 4{b). GIRL image coded 2t entropy rate of 1.5 bpp. .
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